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The mechanism of formation of a plateau of the electron veloci ty  distribution function in monochromatic  
plasma wave damping is discussed. It is shown that the distribution function is subject to strong modulation 
in a neighborhood of the phase veloci ty  of the wave and that  the steady state is established as a result of 
collisions. 

The collisionless damping obtained in the l inear  approximation in [1] is caused by resonance part icles and 
depends on the electron Velocity distribution function in the region 

Vp - -  [/  2e(Do / m << Vp,~< v@ ]/  2egPo / m (0. I) 

where ~0 is the ampli tude of the wave field potential ,  and Vp is the phase velocity.  

According to [2, 8], where the so-ca l led  quasilinear approximation is used, when t --~ oo the distribution 
function in a neighborhood of the phase veloci ty  assumes the form of a "plateau" and damping ceases, 

Since the quasilinear approximation is val id only for a sufficiently wide wave packet,  it is interesting to 
discover how the s teady-s ta te  is achieved in the case of a monochromatic  wave. 

In this case when t --> oo the distribution function suffers powerful modulation, as indicated by L. D. Landau 
[1], who gives the asymptotic  form of  this function: 

f = / 0  + fle-~k~,. (0.2) 

It is shown below that  in a nonlinear t rea tment  the nature of the modulat ion of the distribution function in 
the resonance region depends essentially on the e lec t r ic  field. The process of "plateau" formation is invest i-  

gated on the basis of qual i ta t ive  considerations. In  t h e  case of  a monochromatic  wave this pla teau is estab- 
lished only by taking into account collisions. The t ime-dependence  of the wave energy is also derived. 

1. We shall assume the wave profile to be given and neglec t  its distortion. It wil l  be insignificant if the number of 
electrons trapped by the wave f ield and the  wave ampl i tude  are small .  Assuming the distribution of the trapped electrons 
at the instant t = 0 to be Maxwellian,  we shall write the condit ion of weak distortion of the wave  profile in the form: 

2g'ffg~0 / m ~ v z < v p (1. 1) 

where v T is the average thermal  veloci ty  of the electrons. 

In order to s implify the calculat ions,  we shall  l im i t  the expansion of the distribution function at  the instant t = 0 
and the point v = ~o/k to the first two terms 

l~=o = lo (w- /k )  + (v - w / k)f0' (w / k ) .  (1. 2) 

Thus, in order to find the distribution function it is necessary to solve the k inet ic  equation, whose coefficients in 
the system of coordinates associated with the wave are independent of t ime:  

+ 0l e ~ ' ( ~ ) 0 f  st/, (1.3) 

with the in i t ia l  condit ion 

f~=o = fo(w / k )  + ulo'(W / k) . O. 4) 

2. We shall first consider the potent ia l  profile shown in Fig. t .  The trapped electrons with a veloci ty  greater than 

the phase veloci ty  overtake the wall  cd and are ref lected back, giving up energy to the wave; electrons with a veloci ty  
less than the phase ve loc i ty  are acce le ra ted  by the overtaking wall  ab, receiving energy from the wave. The change in 

the k inet ic  energy of the electrons is equal to the change in the energy of  the wave, taken with the opposite sign: 

AT = - -~/2gAe,  (2. 1) 

where T is the k inet ic  energy of  the trapped electrons, and e is the energy of the wave referred to unit length. 
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Let us write out tile expression for T: 

T = i I { ] ( x ' u ' o ) [ m 2 ' - @ ~ - ( - - ~ - )  - - [ - / ( x , u , t )  mu-~- f ,  a u d x  ( u ~ : •  . (2.2) 
--*/~ X u_ 

We shall denote the first te rm by Too 

The second term will be a l inear  function of t ime:  
Below we show that this is the kinet ic  energy of  tile e lectrons when t ~ ~. 

t~ A T  = T - - T o o =  ( 2 e q I o / m ) 2 ( 2 / a t l - - t ) ] o "  for t % t , = s  . (2.3) b r 

Hence,  I 
C 

Ae = e - -  e ~  = - - 2 ~ .  -~ (2eq~o / m )  2 (2/s h _ t ) ]o ' .  ( 2 . 4 )  -~A ' a ~d  -~ 

Fig. I. 
Note that  the damping  d e c r e m e n t  (1/2)s  de /dr ,  obta ined in [2] by means of  a 

s imple  considerat ion of the energy transfer between the wave and the trapped electrons,  agrees correct  to the numer ica l  

factor with the dec remen t  ca l cu la t ed  by L. D. Landau [1]. 

Omi t t ing  the rather cumbersome calcula t ions ,  we shall give the expression for the wave energy:  

where 

s = coo q- 2 (2eq)o / m)'/'/o'R e (n) when t ~ h 

t [ n2 (T 2 -~ ~) -4- 2/3 n~ "3 -1- 112e~t - -  113r3 ] (n 47 T) -a 

t = h ( n q - T )  , n = [ t / t l ]  . 

(n = 1 ,3  . . . .  ) 

(n = 2 , 4  . . . .  ) 

(2.5) 

If n --* co, then ~,(n) --* 0. 

shown in Fig. 2. 

G ~ 8 t l  

Fig.  2. 

Consequently,  ~ is the energy of the wave when t --~ ~o The rela t ion between c and t i m e  is 

As t -+ m the distribution function of  the trapped electrons suffers powerful mod-  

ulation.  The function f(x, u, t) for fixed u has only two values: f -  = f0 - u f6 and 

f + =  f~, +ufd.  Consequently,  f o r x  > 0 it can be put in the form: 

The last intervals  in Eq. (2.6) have  been 

in the same way for x < 0, too. 

(0 < u , ~  (x ~- 1 h E) t -1, [x + 1/4 ~ - -  (2m ~- 1) I/2 s t -I < u <2 [x +1/4)~ ~- 
-~- (2ra q- 2) 1/2~] t -1) 

([x -4- 1/4~, -~- 2rn'/2~] t - t  < u < [x + r/4~, -~- (2m '~ t)  1/2~.1 t-) 
((lhs - -  x) t -1 < u < O, - -  [:/4~, - -  x _u (2m -~ 2) 1/2 ~,] t - :  < u ,Q - -  [1/4s - -  

- -  ~ + (2m + 1) % )q t - l )  
( - -  [xA;~ - -  z ~- (2m @ 1) 1/~ s t-1 < u < - -  [1/4s - -  x ~- 2ml/2)q t -1) 

( m = 0 ,  t , 2  . . . .  ) .  ( 2 . 6 )  

omi t t ed  in order not to make  the formulas too cumbersome,  f may be written 

The modula t ion  of  the distribution function is caused by the d i f ference  in the periods of the electrons.  We shall ex -  

tend the results obta ined  to potent ia l  profiles with somewhat  smoothed angles and assume that ~ ' ( •  ~ ~o. Let us in-  

ves t iga te  the e f fec t  of  col l is ions on the form of the distribution function. We shall  take the te rm describing the col l is ions 

in the form [4]: 

st / = ,~ 2_ [vr~ ol + + u ) / ] .  Ou (Vp (2.7) 

Here v has the mean ing  of  col l i s ion  frequency.  When t --~ ~ the first t e rm in (2.7) increases strongly, so that  the 

second t e r m  can be neg lec ted .  The coll is ions b e c o m e  important  for al l  x when 

eq)max O ] 02J eq)max ]'l'2-e-e~~ / m (2. S) 
m 0u ~'~ YVT2 0u 2 or t ~ t 1 m ~VT2 

The result of  diffusion in the ve loc i ty  space is that  the osc i l l a t ing  distribution function "broadens out" and at the 

point u = 0 (v = co~k) when t --- oo it assumes the form of  a plateau.  

,% We shall  now consider  the case of  a sinusoidal wave 
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= 112tl[}0(1 - -  COS If.r.). (:'. f) 

In order to solve Eq. (1 .3)  it is necessary to d e t e r m i n e  the intcgraIs  of illOliOll of  all (..]ct[roii ill | hc  wLivc lk.ld. I~y' i~)caHs 

of tl~e mbst  itut ion 

sinVo, kz ( " E ) (:;. 2) 
s i l l  ~ = sin ~/~. kxo sin V~ kxo = 

the  in teg ra l  

ac 

Xl 

dx 

g 2 m : l  [E  - -  eq~o (sin % kx)~l 

is m a d e  to assume the  s imple r  form: 

-= t (x~ - - i n i t i a l  coo rd ina te )  (:~. :!) 

At the  ins tan t  t = 0 

d~ k V'2e@~ / m 
t ] / 1  - -  a 2 sin 2 ~ 2 (a -= sin 1/= k x o )  . (3. ~) t 

/ (x~, E) = io :k ]/'ff'~m-~ In'L- eq~o (sin % kxl)2l 

m l / ' 2 m - I  [E - -  e@o (sin x/a kz0 21 
(:~. 5) 

Here,  the  plus is for u > 0 a n d  minus  for u < 0. At any  o ther  ins tan t  t the  d is t r ibu t ion  funct ion  will  differ  from (3 .5)  in 

tha t  in the  n u m e r a t o r  x 1 = xi(x,  E, t), whi le  in the  d e n o m i n a t o r  ins tead  of  x i we get x. 

Using the  in teg ra l  (8 .4) ,  we t rans form the  express ion  for the  d is t r ibut ion  funct ion:  

{ 1o'4-/oct 1/'2-7~o / m en [ .  ~: X (~)1 

/ (x,  t) " 
[ E _ eq)--o ( s--in-~X /~ k~ ) 2-] 

1, m 1/2m-'l [~" - -  e~o (sin % kx)q 

with the fo l lowing Rotat ion:  

.r = t k ~ 2eOo / m 
2 

(3, ~i) 

o 

where a is the  modulus  of  the  e l l i p t i c  func t ion .  Note t ha t  if  we go over  to the  va r i ab les  x. u, t.  then ,  for f ixed x. j will 

be d e t e r m i n e d  as a func t ion  of  u on the  in t e rva l :  

(-- Uo cos  1/2 kx ,  Uo cos  1/2 kx)  (uo = V2-7-~o / m) . (3. ~ 

As in the  first case,  the  d i s t r ibu t ion  func t ion  suffers powerful  m o d u l a t i o n  at  l a rge  values  of r ,  because  the  periods 

of  the  e l ec t rons  in the  wave  f ie ld  depend  on the  ene rgy  E. The  shape  of  the  d i s t r ibu t ion  funct ion  for the  b o t t o m  of the  po-  

t e n t i a l  wel l  is g iven  in Fig. 3. T he  m a x i m u m  f requency  of  the  osc i l l a t ions  f for fixed x will  occur  at  the  ends Of the in-  

t e rva l  (u,~ cos (1 /2)kx,  u 0 cos (1 /2)kx) ,  where  the  co l l i s ions  the re fo re  b e c o m e  i m p o r t a n t  ea r l i e r  than  for u ~ 0. Thus. the  

d is t r ibu t ion  func t ion  is first smoo thed  nea r  the  ends of  the  in te rva l ,  but  in the  course of  t i m e  in the  m i d d l e  too. i . e .  at 

the point  u = 0 (v = w/k) .  

I ! 

% a u e a 

Fig . . 3 ,  

We shal l  now find the  k ine t i c  ene rgy  of the  e l ec t rons  t rapped  by the  wave fietd: 

% X elD, 

~- 0 

Here 

~---[~ ~] -',- ./'(z, E, t) u ~---I 'tE e~ { / ( x ' E ' O ) [ 2~-~ + 2 , k / j k , ,,., 

a = V-2m -1 [E - -  eO0 (sin 1/~ k.r)"'l 

W e  s u b s t i t u t e  (3. g) in (3 .8 )  and  wri te  ou t  the  second t e rm.  which  we deno te  by AT: 
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1 1]$ ~$ 
o~ [2cOo\ % coo 

AT = - - 8 T '  T ]  T ] ~  f a~cn*: f 
0 0 

cos t ~ d~ 
[1 - -  a t (sin {)t (sn x)'] V t - -  a 2 (sin ~)~ 

tt is ctear that the first term in (3.8) is the kinetic energy of the electrons when r -+ m. 

After expanding 

[1 - -  a2 (sin ~)2(sn x)2] - t  

(3.9) 

and integrating with respect to ~, we obtain 

A T  ----- - - 8  \ T )  TIo~ ~ c n l :  Bj(a) sn~Jx]daj . (3.10) 
0 j ~ ( ]  

Here the Bj(c 0 0 = 0, 1, 2 . . .  ) are expressed in terms of complete ell iptic integrals. 

A rough estimate shows that the contribution of the first term in (3.10) is approximately four times greater than the 
contribution of the rest. Consequently, we shall consider the integral: 

1 1 

J - - ~ I ~ a e ~  : i K ' ( ~ ) = 2 ( ~ - - o c 2 ) c n , d =  . (3 .11)  
0 $ 

O / 2 3 

Fig. 4. 

Here K(a) is a complete elliptic integral of the first kind. We make the 

change of variables: 

I 
Y = K (0) I a' (y) [i - -  a2 (y)] K (0) _ yt cn  I: dy, K (~r Y (3.12) 

0 

Let us investigate the asymptotic behavior of J as 3- --~ oo. Noting that 

a ~ (t - -  oO) I e_l/~ when y ~ O, cn  ~ ~., cos x'y when y t 

and integrating (3. 12) by parts, we obtain: 

] --.-= 4_,7 (0) [w~  cos "~ + 0 ( , -4 )  ] . 

The second term will be small in comparison with the first when v > 10. Using the relation 

(3.13) 

A:T = - - ~ A e  

we find an expression for the wave energy at large values of r: 

(3.14) 

= 80o + g ~ e~o (2eq)o ~q, cos x 
k T i T /  ~----r- 

(3.15) 

The t ime dependence of the wave energy is shown in Fig. 4. 

In conclusion the authors wish to express their thanks to R. Z. Sagdeev for guidance and to V I. Karpman for dis- 

cussion of the results. 
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