DAMPING OF PLASMA WAVES

R. K. Mazitov

Zhurnal prikladnoi mekhaniki i tekhnicheskoi fiziki, No. 1, pp. 27-31, 1965
The mechanism of formation of a plateau of the electron velocity distribution function in monochromatic
plasma wave damping is discussed. It is shown that the distribution function is subject to strong modulation

in a neighborhood of the phase velocity of the wave and that the steady state is established as a result of
collisions.

The collisionless damping obtained in the linear approximation in [1] is caused by resonance particles and
depends on the electron velocity distribution function in the region
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where & is the amplitude of the wave field potential. and vp is the phase velocity.

According to [2, 3], where the so-called quasilinear approximation is used, - when t — w the distribution
function in a neighborhood of the phase velocity assumes the form of a- "plateau” and damping ceases,

Since the quasilinear approximation is valid only for a sufficiently wide wave packet, it is interesting to
discover how the steady-state is achieved in the case of a monochromatic wave.

In this case when t ~> « the distribution function suffers powerful modulation, as indicated by L. D. Landau
[1]. who gives the asymptotic form of this function:

f=fo+ fie=tkot, ' (0.2)

It is shown below that in a nonlinear treatment the nature of the modulation of the distribution function in
the resonance region depends essentially on the electric field. The process of "plateau” formation is investi-
gated on the basis of qualitative considerations. In the case of a monochromatic wave this plateau is estab-
lished only by taking into account collisions. The time-dependence of the wave energy is also derived.

1. We shall assume the wave profile to be given and neglect its distortion. It will be insignificant if the number of
electrons trapped by the wave field and the wave amplitude are small. Assuming the distribution of the trapped electrons
at the instant t = 0 to be Maxwellian, we shall write the condition of weak distortion of the wave profile in the form:
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where v is the average thermal velocity of the electrons.

In order to simplify the calculations, we shall limit the expansion of the distribution function at the instant t = 0
and the point v = w/k to the first two terms

fr=o=Fo(w/ k) + (v —w/k)f'(w/]k). (1. 2)

Thus, in order to find the distribution function it is necessary to solve the kinetic equation, whose coefficients in
the system of coordinates associated with the wave are independent of time:

3 ) @’ (x) 8 :
Hpud DI gy, (1.3)
with the initial condition
fr=o==fo(w [ k) + uf’(w [ k) . (L4

2. We shall first consider the potential profile shown in Fig. 1. The trapped electrons with a velocity greater than
the phase velocity overtake the wall cd and are reflected back, giving up energy to the wave; electrons with a velocity
less than the phase velocity are accelerated by the overtaking wall ab, receiving energy from the wave. The change in
the kinetic energy of the electrons is equal to the change in the energy of the wave, taken with the opposite sign:

AT = —1/oMAe , 2. 1)
where T is the kinetic energy of the trapped electrons, and € is the energy of the wave referred to unit length,
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Let us write out the expression for T:
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We shall denote the first term by Te. Below we show that this is the kinetic energy of the electrons when t — .
The second term will be a linear function of time:
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Fig. 1.

Note that the damping decrement (1/2)e de/dt, obtained in [2] by means of a
simple consideration of the energy transfer between the wave and the trapped electrons, agrees correct to the numerical
factor with the decrement calculated by L. D. Landau [1].

Omitting the rather cumbersome calculations, we shall give the expression for the wave energy:

€ = B + 2 (2e®, / m)" 1) F (n) when t>u (2. 5)
where
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If 0 — . then ¥(n) - 0. Consequently. &, is the energy of the wave when t — =. The relation between ¢ and time is

shown in Fig. 2.

As t — oo the distribution function of the trapped electrons suffers powerful mod-
ulation. The function f(x. u. t) for fixed u has only two values: f_=f; ~uf; and
fi = fu +uf;. Consequently. for x > 0 it can be put in the form:
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The last intervals in Eq. (2. 6) have been omitted in order not to make the formulas too cumbersome. f may be written
in the same way for x < 0, too.
The modulation of the distribution function is caused by the difference in the periods of the electrons. We shall ex-

tend the results obtained to potential profiles with somewhat smoothed angles and assume that & '(z\/4) = . Let us in-
vestigate the effect of collisions on the form of the distribution function. We shall take the term describing the collisions

in the form [4]:
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Here v has the meaning of collision frequency. When t — « the first term in (2. 7) increases strongly. so that the
second term can be neglected. The collisions become important for all x when
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The result of diffusion in the velocity space is that the oscillating distribution function "broadens out™ and at the
point u = 0 (v = w/k) when t — w it assumes the form of a plateau.

3. We shall now consider the case of a sinusoidal wave



O = /,®o(1 — cus kz). (1)

In order to solve Eq. (1.3) it is necessary to determine the integrals of motion of an ¢lectron in the wave feld, By means
of the substitution
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is made to assume the simpler form:
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At the instant t = 0
] 2m=1 [E — ey (sin V2 kx1)? o =
£ (0, E) __ Tot V' 2m  [E — e®q (sin ¥z kan)?] @5

m YV 2m™t [E — e®y (sin 13 kz1)?]
Here. the plus is for u > 0 and minus for u < 0. At any other instant t the distribution function will differ from (3. 5) in
that in the numerator X3 = X;(x, E, t), while in the denominator instead of x; we get x.
Using the integral (3. 4). we transform the expression for the distribution function:
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with the following notation:
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where a is the modulus of the elliptic function. Note that if we go over to the variables x. u. t. then, for fixed x. [ will
be determined as a function of u on the interval:

(—uycos Y/ kz, uycost/, kx) (o= TV 2¢®g/ m) . 3.7

As in the first case, the distribution function suffers powerful modulation at large values of 1, becausc the periods
of the electrons in the wave field depend on the energy E. The shape of the distribution function for the bottom of the po-
tential well is given in Fig. 3. The maximum frequency of the oscillations f for fixed x will occur at the ends of the in-
terval (u, cos (1/2)kx, u, cos (1/2)kx), where the collisions therefore become important earlier than for u ~ 0. Thus. the
distribution function is first smoothed near the ends of the interval, but in the course of time in the middle too. i.e.. at
the point u = 0 (v = w/k).

We shall now find the kinetic energy of the electrons trapped by the wave field:
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~ Here

u =V 2mT[E —ed, (sin '/, kr)?]

‘We substitute (3. 8) in (3. 8) and write out the scceond term. which we denote by AT:
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It is clear that the first term in (3. 8) is the kinetic energy of the electrons when 7 —> .

After expanding
[1 — a?(sin §)2(sn 7)2]-t

and integrating with respect to €. we obtain
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Here the Bj(a) (=0, 1, 2...) are expressed in terms of complete elliptic integrals.

A rough estimate shows that the contribution of the first term in (2. 10) is approximately four times greater than the
contribution of the rest. Consequently, we shall consider the integral:
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Here K{a) is a complete elliptic integral of the first kind. We make the

& change of variables:
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and integrating (3. 12) by parts, we obtain:

J=4K(0)[t2cost+ O] . (3.13)

The second term will be small in comparison with the first when T > 10. Using the relation

A7 = —AAeg (3.14)

we find an expression for the wave energy at large values of 7:

s
e@y (Zeibo) cos T ' (3.15)

m T
The time dependence of the wave energy is shown in Fig. 4.

In conclusion the authors wish to express their thanks to R. Z. Sagdeev for guidance and to V. 1. Karpman for dis-
cussion of the results.
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